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ABSTRACT: 

Stopband widths for three types of Booster resonance lines are calculated. 

The first are the resonance lines due to random sextupole components at the 

end of each dipole. 

The second are the lines (due to random skew sextupoles superimposed into each 

chromaticity sextupole. 

The third are the systematic resonances. 



INTRODUCTION: 

In a course of Booster operation its working point (horizontal tune, vertical 

tune) on a tune diagram can approach or cross several resonance lines 

(Figure 1). 

Some of them have a special interest: the third and fourth integer resonance 

lines. Both are determined on tune diagram by equation 

nxvx + nyvy = P, (1) 

where vx , vy are horizontal and vertical tune, nx, ny , p are integers and 

bx I + by 1 = N, (2) 

where integer N is an order of resonance. 

If nx, ny have the same sign then this is the case of sum resonance. 

If nx, ny have opposite signs then this is the case of difference resonance. 

We are interested in lines with N = 3 and N = 4. 

These two types of line have a very different nature. The third integer 

lines are due to the magnet imperfections. Particularly the sextupole compo- 

nents at the end of each dipole can drive the third integer resonance. Also, 

the chromaticity sextupoles due to the misalignment could create a small 

skewed sextupole which can drive the third integer resonance. 

The fourth integer resonance can be driven by any kind of sextupoles if they 

compose a certain periodic structure along the machine circumference. 

To see the roots which lead to resonance in both cases we should notice Cl,23 

that the point sextupole field 

AB .=B’ x2 
2 (3) 

kicks a particle with azimuthal angle 8, betatron phase ve, inducing incre- 

ment in amplitude a proportional to 

Aa-? a 2 Cos2v0 Sin ve = 
a2 
K-B 

” (Sin 3ve + Sin ve). 



This is a single kick at the point sextupole. 

Now let’s consider all sextupoles with strength distribution 

B”= B”(Q) 

and its Fourier expansion 

B”(O) = 1 (A, Cosn8 + B, Sinn0). 

Substitution (6) 

particle undergo 

into (4) yields with subsequent integration over m turns 

(5) 

(6) 

(7) Aa -$ 

I 

a2 (SinjvO + SinvB)(A,Cos no + B,SinnB) de. 

0 

If 3~ = p is integer then the most significant contribution to Aa from the 

sum (7) will be made by term” 

a2Sin3v0 BP Sin pe sing each turn. 

* we will not consider the strongest case v = integer, assuming that the 
case will be avoided by all means. 
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This case (m=l > can occur if there is a magnet imperfection with randomly 

distributed sextupoles. Then the (6) represents that distribution and par- 

ticles will picks out the sine component with n = p increasing the amplitude 

by Aa every other turn. This is a third integer resonance due to magnet im- 

perfection. 

Let us consider another case. Because the Booster possess a superperiodicity 

of 6 order the sextupole distribution with no imperfection can be 

from (6) to 

B”(e) = 1 ( A, Cos6r1~1 + B, Sin6ne). 
n 

Introducing new variables t = 8/m, L = nm and substituting (8) t 

get 

2lT 
Aa - mc 

I 

a2 (Sinjvmt + Sinvmt)(AL Cos6Lt + BL Sin6Lt)dt. 
L 

0 

0 

rewritten 

(8) 

(7) we’ll 

(9) 

If vm = p is integer then the most significant contribution to Aa from the 

sum (9) is to be made by term a*sinvmtBLSin 6Lt 

at vm = 6L. 

This contribution is made when t changes from 0 to *IT and 8 changes accord- 

ingly from 0- to 2Tm. In other words, this contribution is made by particle 

(10) 

after m turns. For example, if v = 4.5 then equation (IO) admits --- 

the solution m = 4, 1 = 3. That’s why we consider the line 4v = 18 as of 

fourth not half (2v = 9) integer reson.ance. And that resonance results from 



6 superperiodicity of Booster sextupoles. Such type of resonance is often 

referred as systematic or structure resonance. 

The strength of the resonance line nxvx + nyvy = p can be evaluated in term 

of its stopband width Ae which bound a tune area between the lines 

nxvx + n v yy=P* % in such a way that the particle with tune inside that area 

can build up growing or beating amplitude [3]. 

In this note we will evaluate a stopband width for the Booster third and 

fourth integer resonance lines. 

THEORY. 

Following G. Guignard’s treatment of resonance theory [33 we will use for a 

stopband width formulae 

I &I 

* EY 
i 

bx l$x + by l$Y ) ’ (II > 

Here R is the machine radius, for Booster R = 32.1143m; M is the multiple 

order, M = 3 for sextupoles; S = 2 for the sum resonances, S = 1 for the dif- 

ference resonances; E,, Ey are horizontal and vertical emittances. 

The most important part of (11 1 is excitation coefficient K which is deter- 

mined by the integral over all machine lattice 

K = 
1 

M/2 

2n 
k!xl bgl 

dO Bx 2 By 2 
X 

27~ (2R) I”x I! by I! 1 
0 y +l 

K(M-l ) (8) for ny even 

x l$Yl -lz 
$+I) 

(0) for ny odd, 
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where Bx, By are beta functions for linear part of machine, px, LIY are 

(M-1 ) 
corresponding phase advances Kx 

, ,Wl 1 
Y are multipole (sextupole if M=3) 

strengths: 

M-l 
(M-1 ) 

KY (8) = R2 
Pl 

aB, 
axM-l , 

(13) 

M-l 
K;M-l 1 Ce) = Fi2 8B 

IGq i-1 f 

2X 

B, (01, By (8) - magnetic field, B, - magnetic rigidity 

Following further the Guignard’s treatment a criterion giving the distance 6e 

of the working point (vx, v,) from the resonance line, which has to be main- 

tained to prevent the relative amplitude growth A = &a/a above one is 

for a sum resonance and 

de2 g . $ 

(14) 

(15) 

for a difference resonance. 

In the next section we present computed values of Ae and 6e for all lines 

shown in Fig. 1. 
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THE COMPUTED RESULTS. 

The following tables represent the results be/2 and be for three type of 

resonances: 

1. Table I - resonance due to random sextupole components at the end of 

each dipole; 

2. Table II - resonance due to random skew sextupole component 

superimposed into each of the chromaticity sextupole. 

3. Table III - systematic (structure) resonances. 

All calculations were performed with emittances 

EX = 1001~ mm.mrad, Ey = 507 mm.mrad. 

The strength of sextupole components a.t the end of each dipole was chosen as 

K2 (l+rq), where K2 is the strength of eddy current sextupole at the dipole 

end, q=5% or 10% and r is the random number uniformly distributed between -1 

and +l. 

The strength of (random) skew sextupoles placed at the same position as chrom- 

aticity sextupoles was chosen as .00058K2r, where K2 is the strength of chroma- 

ticity sextupole and -1lrbl is uniformly distributed random number. 
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TABLE I. Third integer resonates due to random sextupoles. 

Random 10% 
ERROR 

6 I? 
Resonance 
LINE Ae/2 5% 10% 

3v, = 12 1.665.1O-2 1.277.10-1 7.2.1O-2 

3vx = 13 4.3.10-4 3.3.10-3 1.9.10-4 

3v, = 14 6.8.10-4 5.2.10-3 2.9.10-3 

vx+2vy = 14 4.1.10-4 5.0.10-3 2.7.10-3 

vx+2vy = 13 1.1.10-4 1.4.10-3 7.5.10-4 

2vy-vx = 5 7.3.10-5 1.5.10-3 7.3.10-4 

2vy-v, = 4 6.0.10-4 1.2.10-2 6.0.10-3 

5% 

Ae/2 

1.66.10-2 

2.1.10-4 

3.4.10-4 

2.1.10-4 

5.7.10-5 

3.7.10-5 

3.0.10-4 

5% 

1.273.10- 

1.6.10-3 

2.6.10-3 

2.5.10-3 

6.9.10-4 

7.3.10-4 

6.O.lO-3 

10% 

7.2.1O-2 

9.3.10-4 

1.5.10-3 

1.4.10-3 

3.7.10-4 

3.4.10-4 

3.0.10-3 



TABLE II. Resonances due to random skew sex upoles. 

- 

Resonance 
LINE - 

vx-VY = 0 

2vx+vy= 14 

2vx+vy= 13 

vx+v y= 9 

2v,-vy= 4 

2vx-vy= 5 

3VY = 14 

3vY = 13 

- 

Ae/2 

4.7.10-5 

7.3.10-6 

8.3.1O-+j 

5.9.10-4 

4.3.10-6 

3.3.10-6 

3.7.10-5 

2.9.10-5 

- 

T tie 

5% 

9.3.10-4 

1.1.1o-4 

1.2.10-4 

1.2.10-2 

8.6.10-5 

6.7.10-5 

2.8.10-4 

2.2.10-4 

10% 

4.7.10-4 

5.6.10-5 

6.3.1 0-5 

6.4.1 o-3 

4.3.1 0-5 

3.3.1 0-5 

1 .6.10-4 

1.34.10-4 



TABLE III. Systematic resonances. 

I 6e 
Resonance 
LINE 1 *e/2 17 

1.2.10'2 

3.0.10-2 

6.9.10-3 

1.3.10-2 

1.3.10-l 

10% 

5.8.10-3 

1.7.10-2 

4.0.10-3 

7.8.10-3 

7.2.10-2 



ACKNOWLEDGEMENT: 

I am grateful to Drs. E. Courant, Y. Y. Lee and A. Stevens for the stimulating 

and helpful discussions. 

REFERENCES: 

1 . E. J. N. Wi:Lson, The Importance of Non-Linearities in Modern Proton Synchro- 
trons, CERN 77-13, pp.'111-138. 

2. D. A. Edwards, An Introduction to Circular Accelerators, AIP Conference Pro- 
ceedings, No. 127, pE3-61, 1985. 

3. G. Cuignard, A. General Treatment of Resonances in Accelerators, CERN - 
78-11. 

11 



~__-rr_____+_:_T_. 

.: .~ l...... 

--..! _. __._C.~._ 
I 

;. 

.: : 

/... !. -- 

i .-~ 
T-__i -_ __.__ 

! .1-: --i :. 

. .._ ._--: ,_ : 
1 


